Progress Report Meeting
May 2015

On device Anomaly Detection for
resource-limited systems

Maroua Ben-Attia
Chamseddine Talhi, Abdelwahab Hamou-Lhadj, Babak Khosravifar

= Ecole de technologie supérieure (ETS)
Computer System Architecture Research Lab (LASI)
Department of software engineering and IT
Montreal, QC, Canada

Le génie pour l'industrie

Introduction: Malware Evolution

2 years of mobile malware evolution <=> 20 years of Computer malware evolution

2004 2009 2010 2011 2012 2013 2014

Cabir Ikee and Duh FakePlayer DroidDream Zitmo Masterkey DownAPK

First worm affecting Worms affecting First malware for First large attack to Popular Windows A vulnerability in Windows based
Symbian Series 60 jailbroken iPhones Android makes Google Play market bot and banking Android discovered malware uses
phones. Spreads using Cydia app money by sending Over 50 apps malware Zeus exploiting certificate Android debugging
from phone to phone distribution system SMS messages to containing a root improved with its validation in Android bridge to install

by using Bluetooth due to a hardcoded premium Lline exploit published to Android component which allows fake banking app
OBEX push protocol password in sshd numbers in Russia Android Market designed to steal malware to disguise to Android devices

banking mTANs as a legitimate app connected to the
SOURCE: Sophos, “Mobile Security Threat Report”, 2014, http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report. pdf fected PC

F-Secure 2014: “Android devices are the more popular target for attacks with 294 new threat families or
variants ”

General-purpose small devices

eLinux-based routers, eIndustrial control eComputers and *GPS based systems eCameras, set-top eLinksys routers
DSL modems systems (ICS) routers boxes 2

Problem

Security Issue: Just in 2014 !

Resource Limitations .

Linux Worm barlloz Infects over 31,000 Devices in
Four Months

http://news.softpedia.com/news/Linux-Worm-Darlloz-Infects-over-31-000-Devices-in-Four-Months-433242.shtml

“The Moon scans for vulnerable devices as it looks to
continue spreading, over 1,000 Linksys routers are
already believed to be infected by the malware.”

http://www.ubergizmo.com/2014/02/linksys-routers-malware-the-moon-spreading

A Criminal campaign named Windigo Operation has controlled about
25 thousand Unix servers that send millions of fake mails and put 500
thousand computers at risk every day.

http://www.rcoutada.net/2014/03/new-linux-servers-cpanel-backdoor-ebury-a/

Monday, 17 February 2014

Android SMS malware hosted on Google Play infects 1.2
Million users

http://www.hackleaks.in/2014/02/android-sms-malware-hosted-on-google.html

Low power CPUs cPu RAM

* Lightweight processing \

. limited multitasking % o
384 Mhz 1504 MB

Memory

CPU 600 MHz

RAM 512 MB
Storage | microSD slot
0S Linux , Android

gumsti;’

Battery life

18 164, 2 4m 57s

CPU 720MHz

RAM 256 MB
Storage | 4GB microSD
0S Android, Linux

Objective

Security Usability

Detection rate Battery life

FP/FN rate

CPU usage

]

Memory
consumption

Real-time
detection

)

Attack scenario - Android

1. Benign applications that loads, for
benign reasons, additional code that
can be replaced with malicious ones

by the attacker.

2. Malicious application that does not
contain initially any clearly malicious
code, but downloads additional
faked code after being installed on a
device.

Source: Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., & Vigna, G. (2014, February). Execute this! analyzing unsafe and malicious dynamic code loading in

Android System

App 1 App 2
_App code App code
Fr. stub Fr. stub '

I Load code

/ Framework app

‘ Common -
framework

/’

App 1 App 2
. App code .. App code
Fram. DS

Android System

P o h
~{ \

(”"'Frarhework app“\"\-:I

l_ Update | |
(" server |
\\q_{_ . /,f'
s
M.___/’
Request

new version

android applications. In Proceedings of the 20th Annual Network & Distributed System Security Symposium (NDSS).

Framework's Architecture

On-device Framework |

Data Collection

Extraction

Construction

System Lrace = Trace Preprocessin
Instrumentation Execution P &
Lttng/Strace | filtering *
| e
Data Processing Scan/Model
Management Storage
Normalization
/ Scan
Pattern |./. Model

-
v

v

uoljezijelIaS UOI}IBUUO0) J3AIDS/9Q

1

Profiling

CPU, Memory, Storage, Battery, Network

==

Target System

Server

Model
Const-
ruction

Intrusion Detection Techniques

Signature-Based

Anomaly-Based

Looking for "known patterns" of specific
? malware activity (list of stored signature for
® each malware)

Learning phase: establishes a base of knowledge about "normal"

behavior.
Detection phase: once a behavior is too different from training

data, it is considered abnormal.

Low false positive rate
+ Very accurate and Fast

Can detect both known and unknown malwares
Accuracy increases as increasing training data

Can only detect known intrusions

Required memory budget : varying numbers
of signatures.

DB must be constantly updated

High false positive rate

Slow
i {Base Dﬂta} {\Iew Data}
< r

Signature
(FUG) Pattern-Matching

Signature
T 30D >
ABi

Fast evolution of signatures database
- never feet memory of small-scale systems

Db -y

IS /5, ,
%\. v AL 1' -"'

Model Construction

1 2 3
Open, open, read, gettime,|open, read, close
Lookahead pairs N-gram Tree Varied-length N-grams
W=3 syscall 1after 2 after
wl open open read 1 root k =1 k = 2 k = 3
w2 open read gettime / \ [PO 4 AB(1)x
w3 read gettime open open (read (1) A (3).-‘" --._-.-s":._ x
w4 | gettime open read P B (2)-":-::::::::-1BA(1)
w5 open read close ‘ / \ \ C (3)-.-:- ::::::::_380(1)?5 ____________
. e | |0 Sy 3CD(3) =1%CDE(3)
pen(l) read(l) gettime: (1) D (3)-- DE(3) I
W=3 syscall 1 after 2 after ="
Call1 open Open, read Read, gettime, close / \ ! E (3) —) EA(‘I)x —
call 2 read gettime, close open read (1) gettime (1) open (1) EB(")x
Call 3 | gettime open read .
: ' f(Prc1) > amin(f(ri), f(q))
S$S1-FS if (Zy(8S1) <—-2) - P=0
. . . Deviations if (Z4,(882 or FS) < —-2) — P=1
Finite State Machines g F(SS1-552) || i (Za(552) < —2) S P

(1 + SDy(SS1)) * (a * Zy(SS1) + 3)

P(Anomaly)=

(Br(SS1)) * (Z4,(552 or FS) + 3) * (Zy(552) + 3)

Experimental results

-Dataset-

* Angry birds space
> Normal version: 1.1.0
» Malicious version: 1.1.2

 Candy Star
> Normal version: 1.0.3
> Malicious version: 1.0.2

* Ninja Chicken
> Normal version: 1.4.8
» Malicious version: 1.4.5

http://contagiominidump.blogspot.fr/
https://www.virustotal.com/intelligence/

Angry birds space

Loads additional code to locate the device, steal
contacts and send text messages.

Candy Star
Loads a shared library and DEX file
Read/modify/delete the contents of the SD card.

Ninja Chicken
Loads a shared library and DEX file
Read/modify/delete the contents of the SD card.
Read phone state + identify running applications.

Experimental results

-Creating Normal profile-

e RAM Overhead

Finite State Machines

10,00%
8,00%
E 6,00% e eem—
<
& 4,00%
2,00%
0,00% T T T T T T 1
1 2 3 4 5 6 7 8
second
Lookahead and Tree models Varied-length N-grams
& 5
5 - 4 e —
2 3 — ~
Be ——-—-—-——-—_ 32
1 1
2 0
2 % 4 8 6 T B B 10 0 01 02 03 04 05 06 07 08 1
length of n-gram
Lookahead pairs N-gram Tree Threshold

10

Experimental results

-Creating Normal profile-

e CPU Overhead

80,00% Finite State Machines
60,00% / ~_
= 40,00% \
(@] / \
20,00% / \
0,00% T T T T T T T 1
secon
Lookahead and Tree models Varied-Length N-gram model
80 -
o
m D e
< 40 2 30
° b
R il % 20
- 10
0 . | , , . | | |
2 3 4 5 6 7 8 9 10 0

length of n-gram 0 010203040506 09070809 1
Lookahead pairs === = N-gram Tree Threshold 11

Experimental results

-Creating Normal profile-

e Storage Overhead

Finite State Machines

size (kb)
= = N
o (6] o

7 14 21 28 35 42 49 56 63 70 77 84 91 098

traces

size (kb)

= NN W
S 8

=
o8 8 88

Memory Overhead (7 traces)

2

3 4 5 6 7
length of n-gram
Lookahead pairs

8 S

N-gram Tree

10

size (kb)

o o0 o o 2 e
O OO R, NN

Varied-Length N-grams (7 traces)

e

o

\

\

—

N

o o10203 040506 07 08 09 1

Threshold

12

Experimental results

-Scanning 1, 2 and 3 applications in parallel-

e RAM Overhead

Lookahead N-Gram Tree
6 7
5 6
4 5
= =
=3 - 3 X
R 5 X
1 1
0 - 0
1app 2 app 3 app 1app 2 app 3 app
W2 pairs m10 pairs M 2 pairs ™10 pairs
VL N-gram Finite State Machines
10 10

% RAM
% RAM

9
8
1app 2 app 3app . J
1

m Threshold 0,1 ®Threshold 1 1app 2 app 3app !

Experimental results

-Scanning 1, 2 and 3 applications in parallel-

e CPU Overhead

Lookahead N-Gram Tree
40
30
a
o 20
R
10 -
0 0]
1app _2app 3app 1 app 2 app 3 app
M2 pairs ®10 pairs m 2 pairs M 10 pairs
VL N-gram Finite State Machines
60
70
50
68
40
E 5 66
9 30 - S 64
20 - 3
62
10 -
60
0 - .
1 app 2 app 3 app >8 14
m Threshold 0,1 mThreshold 1 lapp 2 app 3 app

Experimental results

-Accuracy= (TP+TN)/(TP+TN+FP+FN)-

0,9 1
0,85
08 - 0,9 7\
0,75 -
0,8
0,65 - 0,7
0,6 -
0,55 -
0,5
0,5 - -
0,45
0,4 0,4 T T T T T T T T T T T T T T T
O < 0N O N < 00N O < T 0O N O O < 0N O 0 < 0N O
OOHHONNMMOQ'Q'LQmOKDQOI\I\Owwmm
o O O O o O O o o O O o o O O O O O O o
Thresholds
———2-grams == 3-grams = 4-grams = 6-grams ——2-grams ——3-grams ——4-grams ———6-grams
e 7-grams 8-grams =—9-grams

—7-grams = 8-grams = = 9-grams 15

(7))
3=
-
(7))
Q
p -
(S
afd
—
£
"
()
Q.
X
(N

-
S
d
W
=
T
£
AN
<
=
d
~
N
V,
S
o,
=
Q
Q
<

FSM

VLN

0,9

0,8

0,7

0,7

0,6

0,6

0,5

0,4

0,5 -

0,4

0,3 -

0,3 RN R RN RN NN R R NN E R]

L6
€6
68
S8
18
LL
€L
69
59
19
LS
€S
6v
Sy
v
LE
133
6¢
S¢
T¢
LT
€T

960
260
880
¥8°0
80

9.0
TL'o
890
¥9°0
9’0

950
(440
8v0
14740
¥'0

9€0
€0
80
140
[40]

910
[430]
800
¥0'0

Thresholds

Thresholds

=0.4

alpha

=0.2

alpha

=0.0

alpha

16

=1.0

alpha

=0.8

alpha

=0.6

e 3lpha

Experimental results

-ROC curves-

0,845

Algorithms

o : : : : , N FSM VINvl ®EVLN Lookahead m Tree
0 0,2 0,4 0,6 0,8 1

FP
e[S\ ———V\/LN (v1) alpha=0.6

— - VLN (v2) alpha=0,6 Lookahead 2-grams

17

Tree 2-grams linear

Storage:

-Zopfli compression algorithm-

Size (kb)

60

50

40

30

20

10

Size of Traces before and after compression with Zopfili

2500 -
2096

2000 -
g 1500 -
(]
.J;; 1000 -

412
0 -)
500 Traces 100 Traces

M Original Size ® Compressed Size

Size of Models before and after compression with Zopfli (with 500 Traces)

57
24
/ 3,91
3 0,827 0,446 1,37 0,563 - 1 '
—
FSM VLN v1 (alpha=0,6) VLN v2 (alpha=0,6) Lookahead 2-grams Tree 2-grams

® Original Size ® Compressed Size 18

Profiling:

-Profiling parameters-

e 3
e Sources
(wifi/3G)
e Availability
e Bandwidth
X ",
Battery
Storage
Area | N

Profiling:

-Trace management-

network Free memory Decisions
interface space

Bpax > g | - - Send current and compressed traces to the server
- Update model

Bax < ap Sfree < Qg - Increase the threshold of the model “Varied-length N-grams” in order to reduce the
size of the model to be saved.
- Decrease the size of n-grams (window size) for lookahead and tree models.

Biax < ap Sfree > Os - Save traces in the device
- Compress the traces when they reach a certain number (the compression is slow but it
saves more space and reduce the cost of data transfer and battery use)

20

Profiling:

-Model and Scan management-

Decisions

B > apan

R < ApaMm

C< Acpy

Scan using more than one model.

Maximize accuracy :

Increase the size of n-grams (window) for Tree model,
Decrease the threshold of the model "Varied-length N-grams."

B > agg:

R > ApaM

Cc< Acpy

Scan using just one model.
Minimize the amount of data being processed:
Decrease the size of n-grams (window) for lookahead and tree models.
Increase the threshold of the model "Varied-length N-grams."
Decrease depth analysis with the model tree:
During scanning with tree model, handles only a part of the tree n-gram (a sub-tree)

B > apa

C> Acpy

Scan using just one model.

Minimize the amount of data being processed:

Decrease the size of n-grams (window) for lookahead and tree models.

Increase the threshold of the model "Varied-length N-grams."

Decrease depth analysis with the model tree:

During scanning with tree model, handles only a part of the tree n-gram (a sub-tree).
Minimize the number of treatments

Do not send traces to the server

Do not compress the traces

B < agg

Scan only
Decrease depth analysis with the model tree:
During scanning with tree model, handles only a part of the tree n-gram (a sub-tree). 21

Project Summary

Designing a Trade-Off Between Usability and Security: =
» Platform: Android
» Security module:

 Data Collection = system calls

(J Data Processing

L Scan/Model Management
= Signature based detection VS Anomaly based detection

= Anomaly based algorithms : Lookahead, Tree, Varied-length N-grams, FSM
» Storage module:

U Zopfli compression algorithm

» Profiling module:
O Profiling parameters : Network status , Battery, RAM/CPU, Storage

22

What’s Next ?

Designing a Trade-Off Between Usability and Security: =
» Platform: Android, Linux
» Security module:

 Data Collection = system calls, LTTng

(J Data Processing

L Scan/Model Management
= Signature based detection VS Anomaly based detection

= Anomaly based algorithms : Lookahead, Tree, Varied-length N-grams, FSM, other algorithms
» Storage module:

U Zopfli compression algorithm

» Profiling module:
O Profiling parameters : Network status , Battery, RAM/CPU, Storage

) Dynamic decision maker

O Monitoring system behavior and selecting the best anomaly detection Algorithm. 23

