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Introduction: Malware Evolution

2 years of mobile malware evolution <=> 20 years of Computer malware evolution

2004 2009 2010 2011 2012 2013 2014

Cabir Ikee and Duh FakePlayer DroidDream Zitmo Masterkey DownAPK

First worm affecting Worms affecting First malware for First large attack to Popular Windows A vulnerability in Windows based
Symbian Series 60 jailbroken iPhones Android makes Google Play market bot and banking Android discovered malware uses
phones. Spreads using Cydia app money by sending Over 50 apps malware Zeus exploiting certificate Android debugging
from phone to phone distribution system SMS messages to containing a root improved with its validation in Android bridge to install

by using Bluetooth due to a hardcoded premium Lline exploit published to Android component which allows fake banking app
OBEX push protocol password in sshd numbers in Russia Android Market designed to steal malware to disguise to Android devices

banking mTANs as a legitimate app connected to the
SOURCE: Sophos, “Mobile Security Threat Report”, 2014, http://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report. pdf fected PC

F-Secure 2014: “Android devices are the more popular target for attacks with 294 new threat families or
variants ”

General-purpose small devices

eLinux-based routers, eIndustrial control eComputers and *GPS based systems eCameras, set-top eLinksys routers
DSL modems systems (ICS) routers boxes 2



Problem

Security Issue: Just in 2014 !

Resource Limitations .

Linux Worm barlloz Infects over 31,000 Devices in
Four Months

http://news.softpedia.com/news/Linux-Worm-Darlloz-Infects-over-31-000-Devices-in-Four-Months-433242.shtml

“The Moon scans for vulnerable devices as it looks to
continue spreading, over 1,000 Linksys routers are
already believed to be infected by the malware.”

http://www.ubergizmo.com/2014/02/linksys-routers-malware-the-moon-spreading

A Criminal campaign named Windigo Operation has controlled about
25 thousand Unix servers that send millions of fake mails and put 500
thousand computers at risk every day.

http://www.rcoutada.net/2014/03/new-linux-servers-cpanel-backdoor-ebury-a/

Monday, 17 February 2014

Android SMS malware hosted on Google Play infects 1.2
Million users

http://www.hackleaks.in/2014/02/android-sms-malware-hosted-on-google.html
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Attack scenario - Android

1. Benign applications that loads, for
benign reasons, additional code that
can be replaced with malicious ones

by the attacker.

2. Malicious application that does not
contain initially any clearly malicious
code, but downloads additional
faked code after being installed on a
device.

Source: Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., & Vigna, G. (2014, February). Execute this! analyzing unsafe and malicious dynamic code loading in
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Framework's Architecture
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Intrusion Detection Techniques

Signature-Based

Anomaly-Based

Looking for "known patterns" of specific
? malware activity (list of stored signature for
® each malware)

Learning phase: establishes a base of knowledge about "normal"

behavior.
Detection phase: once a behavior is too different from training

data, it is considered abnormal.

Low false positive rate
+ Very accurate and Fast

Can detect both known and unknown malwares
Accuracy increases as increasing training data

Can only detect known intrusions

Required memory budget : varying numbers
of signatures.

DB must be constantly updated

High false positive rate
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Model Construction

1 2 3
Open, open, read, gettime,|open, read, close
Lookahead pairs N-gram Tree Varied-length N-grams
W=3  syscall 1after 2 after
wl open open read 1 root k =1 k = 2 k = 3
w2 open read gettime / \ [ PO 4 AB(1 )x
w3 read gettime open open ( read (1) A (3).-‘" --._-.-s":._ x
w4 | gettime open read P B (2)-":-::::::::-1BA(1)
w5 open read close ‘ / \ \ C (3)-.-:- ::::::::_380(1)?5 ____________
. e | |0 Sy 3CD(3) =1%CDE(3)
pen(l) read(l) gettime: (1) D (3)-- DE(3) I
W=3  syscall 1 after 2 after ="
Call1  open Open, read  Read, gettime, close / \ ! E (3) —) EA(‘I )x —
call 2 read  gettime, close open read (1) gettime (1) open (1) EB(" )x
Call 3 | gettime open read .
: ' f(Prc1) > amin(f(ri), f(q))
S$S1-FS if (Zy(8S1) <—-2) - P=0
. . . Deviations if (Z4,(882 or FS) < —-2) — P=1
Finite State Machines g F(SS1-552) || i (Za(552) < —2) S P

(1 + SDy(SS1)) * (a * Zy(SS1) + 3)

P(Anomaly)=

(Br(SS1)) * (Z4,(552 or FS) + 3) * (Zy(552) + 3)




Experimental results

-Dataset-

* Angry birds space
> Normal version: 1.1.0
» Malicious version: 1.1.2

 Candy Star
> Normal version: 1.0.3
> Malicious version: 1.0.2

* Ninja Chicken
> Normal version: 1.4.8
» Malicious version: 1.4.5

http://contagiominidump.blogspot.fr/
https://www.virustotal.com/intelligence/

Angry birds space

Loads additional code to locate the device, steal
contacts and send text messages.

Candy Star
Loads a shared library and DEX file
Read/modify/delete the contents of the SD card.

Ninja Chicken
Loads a shared library and DEX file
Read/modify/delete the contents of the SD card.
Read phone state + identify running applications.




Experimental results

-Creating Normal profile-
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Experimental results

-Creating Normal profile-

e CPU Overhead
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Experimental results

-Creating Normal profile-

e Storage Overhead
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Experimental results

-Scanning 1, 2 and 3 applications in parallel-
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Experimental results

-Scanning 1, 2 and 3 applications in parallel-

e CPU Overhead
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Experimental results

-Accuracy= (TP+TN)/(TP+TN+FP+FN)-
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Experimental results

-ROC curves-
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Storage:

-Zopfli compression algorithm-

Size (kb)
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Profiling:

-Profiling parameters-

e 3
e Sources
(wifi/3G)
e Availability
e Bandwidth
X ",
Battery
Storage
Area | N




Profiling:

-Trace management-

network Free memory Decisions
interface space

Bpax > g | - - Send current and compressed traces to the server
- Update model

Bax < ap Sfree < Qg - Increase the threshold of the model “Varied-length N-grams” in order to reduce the
size of the model to be saved.
- Decrease the size of n-grams (window size) for lookahead and tree models.

Biax < ap Sfree > Os - Save traces in the device
- Compress the traces when they reach a certain number (the compression is slow but it
saves more space and reduce the cost of data transfer and battery use)

20



Profiling:

-Model and Scan management-

Decisions

B > apan

R < ApaMm

C< Acpy

Scan using more than one model.

Maximize accuracy :

Increase the size of n-grams (window) for Tree model,
Decrease the threshold of the model "Varied-length N-grams."

B > agg:

R > ApaM

Cc< Acpy

Scan using just one model.
Minimize the amount of data being processed:
Decrease the size of n-grams (window) for lookahead and tree models.
Increase the threshold of the model "Varied-length N-grams."
Decrease depth analysis with the model tree:
During scanning with tree model, handles only a part of the tree n-gram (a sub-tree)

B > apa

C> Acpy

Scan using just one model.

Minimize the amount of data being processed:

Decrease the size of n-grams (window) for lookahead and tree models.

Increase the threshold of the model "Varied-length N-grams."

Decrease depth analysis with the model tree:

During scanning with tree model, handles only a part of the tree n-gram (a sub-tree).
Minimize the number of treatments

Do not send traces to the server

Do not compress the traces

B < agg

Scan only
Decrease depth analysis with the model tree:
During scanning with tree model, handles only a part of the tree n-gram (a sub-tree). 21




Project Summary

Designing a Trade-Off Between Usability and Security: =
» Platform: Android
» Security module:

 Data Collection = system calls

(J Data Processing

L Scan/Model Management
= Signature based detection VS Anomaly based detection

= Anomaly based algorithms : Lookahead, Tree, Varied-length N-grams, FSM
» Storage module:

U Zopfli compression algorithm

» Profiling module:
O Profiling parameters : Network status , Battery, RAM/CPU, Storage

22



What’s Next ?

Designing a Trade-Off Between Usability and Security: =
» Platform: Android, Linux
» Security module:

 Data Collection = system calls, LTTng

(J Data Processing

L Scan/Model Management
= Signature based detection VS Anomaly based detection

= Anomaly based algorithms : Lookahead, Tree, Varied-length N-grams, FSM, other algorithms
» Storage module:

U Zopfli compression algorithm

» Profiling module:
O Profiling parameters : Network status , Battery, RAM/CPU, Storage

) Dynamic decision maker

O Monitoring system behavior and selecting the best anomaly detection Algorithm. 23






